
LECTURE 4: BEILINSON’S CONJECTURES FOR NUMBER

FIELDS

(THE WORK OF BOREL AND APPLICATIONS)

In this lecture we shall study Beilinson’s conjectures in the special case that
X = SpecF for F a number field. That is, the dimension zero case. This is the
only dimension in which Beilinson’s conjectures are known in generality. In some
sense, the proof (by Borel) inspired Bloch, and in turn Beilinson, in their hunt for
a higher dimensional generalisation. I hope to convey at least glimpses of what I
believe is a truly beautiful story.

1. Motivic cohomology of a number field

Let us see what Beilinson’s conjectures predict for the Dedekind zeta function
ζF (s) = L(H0(F ), s) of a number field F . Let [F : Q] = d = r1 + 2r2 as usual.
Recall that ζF (s) has a single (simple) pole, at s = 1. The Euler factors at infinity
contribute r1 copies of Γ( s2 ) and r2 copies of Γ(s). Since the Gamma function
has simple poles at s = 0,−1,−2, . . . one reads off the from functional equation
s ↭ 1− s that the order of vanishing of ζF (s) at s = −n is precisely dn where

dn :=

 r1 + r2 − 1 if n = 0
r2 if n > 0 is odd
r1 + r2 if n > 0 is even .

Write X = SpecF and let OF be the ring of integers of F . Let m ≥ 1 and
consider the Beilinson regulator

rB : H1
M(OF ,Q(m)) → H1

D(XR,R(m)) ∼= Rdm−1 .

Then the Beilinson conjectures predict first that

dimQ H1
M(OF ,Q(m)) = dm−1

for m ≥ 1 and second that

lim
s→1−m

(s−(m−1))−dm−1ζF (s) ∼Q∗

{
vol(rB(H

1
M(OF ,Q(m)))) if m > 1

vol(r̃B(H
1
M(OF ,Q(m)))⊕N0(X)Q) if m = 1 .

Note that N0(X) = Z in our case of X = SpecF . Under the functional equation,
for m > 1 the above becomes

|Disc(F )| 12πm(dm−d)ζF (m) ∼Q∗ vol(rB(H
1
M(OF ,Q(m)))) .

At the end of Lecture 1 I stated Borel’s theorem on the dimensions of
H1

M(OF ,Q(m)) and lo and behold they confirm the first part of Beilinson’s con-
jectures for X = SpecF .

Remark 1.1. Of course, I stated Borel’s theorem for H1
M(F,Q(m)) but

H1
M(OF ,Q(m)) ≃ H1

M(F,Q(m)) for m > 1 (by the localisation sequence and since
the motivic cohomology of a finite field is torsion away from the Chow diagonal)
and H1

M(OF ,Q(m)) ∼= O∗
F ⊗Q.
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And what about the second part of the conjecture? Well, Borel also defined
a regulator map (called the Borel regulator rBo) and showed that the associated
covolume agrees with the residues of zeta. Subsequent work of Burgos-Gil showed
that rBo = 2rB, hence confirming the second part of Beilinson’s conjectures for
X = SpecF .

Remark 1.2. The above story is completely ahistorical; Borel’s work is from the
70’s and was an inspiration for Bloch and Beilinson’s work in the 80’s.

To give a precise statement of Borel’s theorem and to describe the proof, it will
be easier to phrase things in terms of algebraic K-theory (recall that I stated in
Lecture 1 that there is a motivic Atiyah-Hirzebruch spectral sequence which links
algebraic K-theory and motivic cohomology).

Theorem 1.3. (Borel) The even K-groups K2n(OF ) are torsion. For the odd
K-groups we have dimQ K2n+1(OF )⊗Q = dn. Moreover, there is a regulator map

rBo : K2n+1(OF ) → Rdn

whose image has covolume (wrt to a natural Q-structure on the right hand side)

vol(rBo(K2n+1(OF )⊗Q)) ∼Q∗ |Disc(F )| 12π(n+1)(dn+1−d)ζF (n+ 1) .

Remark 1.4. The torsion subgroups of K∗(OF ) also turn out to be very interesting,
but that’s a whole other story...

1.5. A sketch proof of Borel’s theorem.
This section will barely give any details. Don’t worry if you don’t understand some
(or any) of the objects involved. The point that I want to make is that none of
these tools are available in higher dimension.

The dimension part of Borel’s theorem relies on two other theorems of Borel:

Theorem 1.6. (Borel) Let G be an algebraic group over Q such that G(R) is
connected, and let Γ ⊂ G(Q) be an arithmetic subgroup. Then the map

Hq
cont(G(R),R) → Hq(Γ,R).

induced by Γ → G(R) is an isomorphism for q ≪ rankQ G(Q).

On the left hand side we have continuous group cohomology, where R is consid-
ered as a trivial G(R)-module with the usual topology and on the right hand side
the group cohomology of the discrete subgroup Γ. We will use the theorem in the
case G = ResF/QSLN and Γ = SLN (OF ).

Theorem 1.7. (Borel)

H∗
cont(SLN (R),R) ∼= H∗(SON (R)\SUN (R),R) ∼= ∧∗(e5, e9, e13, . . . , e4⌊N−1

2 ⌋+1)

where each eq ∈ Hq(SON (R)\SUN (R),Z) and
H∗

cont(SLN (C),R) ∼= H∗(SUN (C),R) ∼= ∧∗(ε3, ε5, ϵ7, . . . , ε2N−1)

where each εq ∈ Hq(SUN (C),Z).

Now, by definition Km(OF ) := πm(BGL(OF )
+). The short exact sequence

0 → SL(OF ) → GL(OF ) → O∗
F → 0

implies that Km(OF ) := πm(BSL(OF )
+) for m ≥ 2. So there is a Hurewicz map

Km(OF ) → Hm(BSL(OF )
+,Z). The topological space BSL(OF )

+ is a associative
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H-space (a topological space with a continuous product map which is associative
up to homotopy. The product makes the homology and cohomology into dual Hopf
algebras). By Cartan-Serre, for any H-space H the Hurewicz map ⊗Q satisfies

πm(H)⊗Q ∼−→ PHm(H,Q) := {x ∈ Hm(H,Q) |∆∗x = x⊗ 1 + 1⊗ x}.

The right hand side is called the primitive homology. It is the dual of the inde-
composable cohomology (i.e. Hm modulo the image of cup product). So we get an
isomorphism

Km(OF )⊗Q ∼−→ PHm(BSL(OF )
+,Q) ∼= PHm(BSL(OF )

+,Q) ∼= lim−→
N

PHm(SLN (OF ),Q) .

Now letG := ResF/QSLN (R) so thatG(R) = SLN (R⊗QF ) ∼= SLN (R)r1×SLN (C)r2 .
Then the above two theorems combine to give

Hm(SLN (OF ),R) ∼= Hm
cont(G(R),R) ∼= ∧m(ei)

⊗r1 ⊗ ∧m(ϵj)
⊗r2 .

So we see that Hm(SLN (OF ),R) ∼= Hm(SLN+1(OF ),R) for N ≫ 0 and thus

Hm(SL(OF ),R) ∼= ∧m(ei)
⊗r1 ⊗ ∧m(ϵj)

⊗r2 .

Taking indecomposables and then taking duals gives the result:

dimQ(Km(OF )⊗Q) = dimR PHm(SL(OF ,R) =
{

0 if m is even
dn if m = 2n+ 1 .

We won’t talk about the proof of the residue part of Borel’s theorem. But
at least let us see what Borel’s regulator is. Well, for each embedding σ : F ↪→ C
(real or complex) we can consider the composition

K2n+1(OF ) → PH2n+1(SL(OF ),Z)
σ∗−→ PH2n+1(SL(C),Z)

(2πi)nc2n+1−−−−−−−−→ R(n)

where c2n+1 := 2πφ−1(ϵ2n+1) and φ : H∗
cont(SLN (C),R) ∼−→

∧∗(ε3, ε5, ϵ7, . . . , ε2N−1) is the isomorphism in Theorem 1.7. Ranging over
all the embeddings we get the Borel regulator

rBo = r
(n+1)
Bo : K2n+1(OF ) → Rdn .

2. An application: Zagier’s conjecture

In the above formulation, it is not too hard to figure out that under the iden-
tification O∗

F
∼= K1(OF ) ∼= H1(GLN (OF ),Z) (the latter isomorphism holds for

N ≥ 3), the components of the Dirichlet regulator are given by log |det | ∈
Homcont(GLN (C),R) ∼= H1

cont(GLN (C),R) ∼= R for each embedding F ↪→ C. We
knew this already from Lecture 1 since the way I defined Dirichlet regulator was in
terms of logarithms of algebraic numbers. In any case, the m = 1 case of Beilin-
son’s conjecture for SpecF (i.e. the analytic class number formula) says that up to
multiplying by a non-zero rational number and a specified power of π, the value of
ζF (s)/ζQ(s) at s = 1 is given as a product of logarithms of algebraic numbers in F .
We cannot simply take the value at s = 1 of ζF (s) because it has a pole there. But
at integers s ≥ 2, ζF (s) does not have a pole so we can speak of its value. In this
case, we have Zagier’s conjecture which loosely says that up to a rational number
and a specified power of π, the values of ζF (s) at integers s = k ≥ 2 are given by
k-th polylogarithms of algebraic numbers.
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Recall that for k ≥ 1, the k-th polylogarithm is defined on {z ∈ C | |z| < 1} by

Lik(z) =

∞∑
n=1

zn

nk

The case k = 1 is the usual logarithm − log(1− z), k = 2 is called the dilogarithm,
k = 3 the trilogarithm, and so on. Polylogarithms crop up all over the place
in maths and physics, and have been studied since at least the 17th century. In
modern times they provide links/cross-fertilisation between the mixed motives and
quantum field theory communities, for example!

Just like the logarithm, polylogarithms admit an analytic continuation to a multi-
valued function on C\{0, 1}. Bloch, Wigner, Ramakrishnan and Zagier showed how
to define a single-valued version of the polylogarithm. For example, the single-
valued form of the dilogarithm Li2 (called the Bloch-Wigner function) is

D : C\{0, 1} → R, z 7→ Im(Li2(z)) + arg(1− z) log |z| .
It satisfies the so-called Spence-Abel 5-term relation:

D(x) +D(y) +D

(
1− x

1− xy

)
+D(1− xy) +D

(
1− y

1− xy

)
= 0

for all x, y ∈ C \ {0, 1} with xy ̸= 1.
Let’s look closer at the first case of Zagier’s conjecture, “ζF (2) and diloga-

rithms”. Since the “ζF (1)/ζQ(1) and logarithms” case was coming from the Dirich-
let/Borel/Beilinson regulator K1(OF ) → Rr1+r2−1, it makes sense to look at the
Borel/Beilinson regulator

rBo : K3(OF )⊗Q ∼= CH2(OF , 3)⊗Q = H1
M(OF ,Q(2)) → Rd1 = Rr2

to study the s = 2 case of Zagier’s conjecture. Motivated by the Spence-Abel
relation, we consider the following construction due to Bloch: For a field K, write

C(K) :=

〈
[x] + [y] +

[
1− x

1− xy

]
+ [1− xy] +

[
1− y

1− xy

]
|x, y ∈ K\{0, 1}, xy ̸= 1

〉
for the subgroup of Z[K\{0, 1}] generated by things that look like the Spence-Abel
relation. A theorem of Matsumoto implies that there is a surjection

K∗ ∧Z K∗ ↠ K2(K)

and the image of the map

β : Z[K\{0, 1}] → K∗ ∧Z K∗, [x] 7→ x ∧ (1− x)

lands in the kernel. What’s more, one can also check that β(C(F )) = 0 so we have
an exact sequence.

Z[K\{0, 1}]
C(K)

β−→ K∗ ∧Z K∗ → K2(K) → 0 .

The Bloch group B(K) of a field K is defined to be the kernel on the left, so we
have an exact sequence

0 → B(K) → Z[K\{0, 1}]
C(K)

β−→ K∗ ∧Z K∗ → K2(K) → 0 .

For our number field F , define a dilogarithmic map on B(F ) by

DF : B(F ) → Rr2 , [x] 7→ (D(σr1+1(x)), . . . , D(σr1+r2(x))) .
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It is well-defined because D(C(C)) = 0.

Remark 2.1. Why do we only use the complex embeddings in the definition of DF ?
Well, one can check that the Bloch-Wigner function satisfies D(z) = −D(z) (see
the exercise sheet), so in particular D vanishes on R.

This map looks kind of like the Dirichlet regulator from Lecture 1, but with
dilogarithms instead of logarithms. Could it be related to the Borel regulator on
K3(OF )? It has the correct target Rr2 but the source is B(F ) rather than K3(F ).
Well, Bloch constructed a homomorphism ϕ : B(F ) → K3(F ) making the following
diagram commute:

K3(F ) Rr2

B(F )

rBo

ϕ
DF

Suslin proved that the kernel and cokernel of ϕ are finite, so we have a commutative
diagram

K3(OF )⊗Q Rr2

B(F )⊗Q

rBo

ϕ ⊗ Q ∼=
DF

Borel’s theorem says then that rBo(K3(OF )⊗Q)) ∼= DF (B(F )⊗Q) is a Q-structure
on Rr2 and

vol(rBo(K3(OF )⊗Q)) = vol(DF (B(F )⊗Q)) ∼Q∗ |Disc(F )| 12π2(d2−d)ζF (2) .

This proves Zagier’s conjecture for ζF (2).
The above suggests a strategy for proving Zagier’s conjecture for s = k ≥ 3 too.

Indeed, Zagier defined higher analogues Bk(F ) of the Bloch group (so B2(F ) =
B(F )) and wrote down k-th polylogarithmic maps

Pk,F : Bk,F →
{

Rr2 if k is even
Rr1+r2 if k is odd

(so P2,F = DF ).
Beilinson-Deligne and de Jeu constructed a commutative diagram

K2m−1(OF )⊗Q Rdm−1

Bm(F )

rBo

ϕm
Pm,F

By Borel’s theorem, to prove Zagier’s conjecture it suffices to show that

ϕm ⊗Q : Bm(F )⊗Q → K2m−1(OF )⊗Q

is surjective. Goncharov has shown that ϕ3 ⊗ Q is surjective thus confirming the
“ζF (3) and trilogarithms” case of Zagier’s conjecture.



6 LECTURE 4: BEILINSON’S CONJECTURES FOR NUMBER FIELDS

Remarks 2.2. (1) In principle, the above strategy allows for a computer to
numerically “check” Zagier’s conjecture for a given number field F and a
given zeta value ζF (m). Indeed, Zagier supported his conjecture with a lot
of computer evidence.

(2) Goncharov and Rudenko have recently proved the s = 4 case of Zagier’s
conjecture. I don’t know how the proof goes.

(3) The injectivity of ϕm ⊗ Q : Bm(F ) ⊗ Q → K2m−1(OF ) ⊗ Q is also an
interesting and difficult problem.


